- Terminology
- Experiment 실험
- Sample space 표본 공간: 모든 결과의 집합
- event 사건: 표본공간의 부분집합
- Probability P(E) = |E| / |S|
- complementary event 여사건 P(E bar) = 1 - P(E)
- conditional probability 조건부확률
P(E|F) = P(E ∩ F) / P(F)
- independence 독립
P(E ∩ F) = P(E)P(F)
P(E|F) = P(E)
- Bernoulli trial
두가지 결과만 존재(success, fail)
n번의 Bernoulli trial에서 k번의 success: nCk p^k q^n-k
- random variable
sample space → Real number의 함수
예) 동전 3번 던져서 2번 앞면: X = 2
- E, V
- Expected value = expectation = mean = 평균
E(X) = SIGMA(P(s)X(s))
- in bernoulli trial E(X) = np
- E(aX+b) = aE(X)+b
- E(XY) = E(X)E(Y) : X, Y is independent
- Variance 분산
- Deviation of X at S 편차
X(S) - E(X)
- 분산 = 편차 제곱의 평균
V(X) = SIGMA( X(s) - E(X))^2 P(s)
- Standard deviation 표준편차
sigma(X) = sqrt(V(X))
- V(X) = E(X^2) - (E(X))^2
- V(X) = E((X-E(X))^2)
- in bernoulli trial V(X) = pq