-
Basic Counting Principles
- product rule
- n1 ways to do first task, n2 ways to do first task: total n1*n2 way
- (set) for finite sets A1 … Am
|A1 x A2 x … x Am| = |A1| |A2| … |Am| (cartesian product)
- Sum rule
- one of n1 ways or one of n2 ways → n1+n2 ways
- (set) for finite disjoint sets A1 … Am
|A1 U A2 U … U Am| = |A1|+ … + |Am|
- Subtraction rule
- one of n1 ways or one of n2 ways → n1+n2 -common ways
- (set) for finite sets A,B
|A U B| = |A| + |B| - |A ∩ B|
-
Pigeonhole Principle
- k+1 object in k box → at least one box contains more than 2 objects
- (general version)
N object in k box → (ceil) N/k objects
-
Permutation 순열
ordered arrangement of r elements
P(n,r) = nPr
-
Combination 조합
unordered selection of r elements
C(n,r) = nCr = (n r) (세로로 씀)
-
Binomial theorem 이항정리
(x+y)^n = SIGMA nCi x^n-i y^i
-
Pascal’s Identity
nCr = n-1Cr-1 + n-1Cr
-
Permutation with Repetition 중복순열
nPIr = n^r
-
Combination with Repetition 중복조합
H는 Homogeneous 를 뜻함
nHr = ((n r)) = n+r-1 C r