<aside> π‘ f(x) = $\frac {1} {b-a}$, F(x) = $\frac {x-a}{b-a}$ for a<x<b
</aside>
λͺ¨λ νλ₯ μ΄ λλ±ν λΆν¬λ₯Ό λ§νλ€.

Normal Distribution with mean $\mu \in R$, variance $\sigma^2 > 0$
<aside> π‘ $n(\mu, \sigma^2 ) = \frac{1}{ \sqrt {2 \pi} \sigma } e^{ - \frac { (x-\mu)^2}{2 \sigma^2}}$
</aside>

*proof that normal distribution is probability density ( ν©μ΄ 1 ) μ΄μμ λΆ μμ ν΅μ§Έλ‘ μ κ³±ν λ€ κ·Ήμ’νμμ μ λμ΄λ₯Ό ꡬνλ€


N(0,1)μ νμ€μ κ·λΆν¬λΌ νλ€. μ κ·νλ νλ₯ λ³μ Zλ₯Ό μ¬μ©νλ€.
$Z = \frac {X-\mu}{\sigma}$
density function $\phi (z) = \frac {1}{\sqrt{2 \pi}} e^{ - \frac{1}{2} z^2 }$
distribution function $\Phi(z)$
